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Abstract

We present a new hybrid fluid/PIC simulation scheme for whistlers, which eliminates both the speed-of-light time scale
and the electron plasma oscillation time scale, and concentrates simulation resources on the resonant parts of electron
phase space that control whistler evolution. The code runs with time steps on the order of the electron gyrofrequency, with
extremely accurate energy conservation and numerical stability. Examples are shown of application to whistler instability
growth and saturation, and ducting of whistlers in density channels.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Whistlers [1,2] are right-hand polarized electromagnetic waves that are carried by the electrons in a plasma,
with frequency in the range below the electron cyclotron frequency X ” eB0/mc but above the lower-hybrid
frequency. Here, B0 is the ambient magnetic field and m is the electron mass. Whistlers are slow waves, i.e.,
the phase velocity x/k � c, and therefore the source for the wave magnetic field is overwhelmingly the electron
current, rather than the displacement current. Furthermore, in situations of interest the electron plasma fre-
quency xp ” (4pn0e

2/m)1/2 is typically much larger than X, and thus certainly very large compared to x. Here
n0 is the ambient electron density. The waves are thus quasineutral, i.e., wave perturbations n � n0 are small
compared to n0 itself, even if the wave amplitude is large. (It is important to note that this does not mean that
the electrostatic field is negligible; a small perturbation to n can lead to a very large electrostatic field. Ion
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sound waves, for example, are in essence quasineutral electrostatic waves.) Numerical simulation schemes
involving the use of a straightforward electromagnetic field solver are thus extremely inefficient, since the time
steps must be small enough to resolve the Courant condition for speed c, and must also be small enough to
resolve the plasma frequency time scale. Both of these time scales are much smaller than the wave period. In
addition, particle simulation schemes based on a full electromagnetic field solver are particularly susceptible to
noise, since the charge density q(x, t) ” � e[n(x, t) � n0(x)] is obtained from small perturbations to the finite
number of simulation particles in a given region, and the electrostatic component of the electric field in essence
derives from q(x, t) through Poisson�s equation.

Traditionally, the Darwin model [3] has been used to address these issues that arise in numerical simu-
lation of slow electromagnetic waves. In this approach, the solenoidal component of the displacement cur-
rent (i.e., essentially the transverse component, for a linear plane wave) is neglected in Maxwell�s equations.
The irrotational component of the displacement current cannot be neglected, since it is essentially the time
derivative of the electrostatic field, i.e., the longitudinal electric field in a linear plane wave. The separation
of the solenoidal component of the displacement current is difficult, and it enormously complicates the
algorithmic schemes as well as significantly increasing the running time of Darwin codes. Quasineutrality
is a separate issue that has also been addressed within the Darwin scheme [3,4], but it leads to additional
complications.

Another approach which has been used [5,6] to study the nonlinear evolution of whistlers is to begin with
equations relating the slowly varying quantities w and a that characterize the long-time evolution of resonant
electrons. Here, w is the difference in phase between the gyro motion of an electron and the magnetic field of
the wave, and a is the pitch angle of the electron. This approach permits the use of long-time steps, but it can
only be used for the case of a single discrete wave, as the definition of w inherently depends on there being well-
defined (but possibly slowly varying) values of k and x for the wave.

In the present paper, we present a new, efficient and simple approach which is not restricted to the case of a
single mode, and which takes advantage of the characteristics of whistlers (and other low-frequency electro-
magnetic waves). Specifically, a whistler is carried primarily by the large number of cool non-resonant elec-
trons, and it is quite accurate to represent these electrons as a cold fluid [1,2]. However, the whistler may
be damped, or driven unstable, by a smaller class of fast electrons that are in cyclotron resonance with the
wave. These electrons also engage in complex nonlinear behaviors such as trapping and stochastic diffusion
that control the evolution of large-amplitude waves and can result in nonlinear effects such as instability sat-
uration and triggered emission. In our hybrid scheme, the energetic electrons of interest are followed using the
particle-in-cell (PIC) technique, while the bulk of the electrons are represented as a cold fluid, which can be
advanced numerically orders of magnitude faster. Because of the presence of the cold fluid, we are able, within
a fully self-consistent scheme, to eliminate the entire displacement current from Maxwell�s equations (not just
the solenoidal part), and to determine the electrostatic field directly from the requirement of quasineutrality,
rather than by requiring that Poisson�s equation be satisfied. Speed-of-light phenomena cannot occur since
there is no displacement current, and electron plasma oscillations cannot occur since quasineutrality is en-
forced. It is therefore not necessary to resolve the xp time scale. The result is a code which we call HEMPIC
(hybrid electromagnetic PIC) that runs with time steps typically �1/4X. At present we are running a 2-D
Cartesian version of HEMPIC, but there is no reason why the scheme cannot be 2-D cylindrical or fully
3-D. Also at present, HEMPIC follows only the motion of electrons and treats the ions as an immobile neu-
tralizing background, but the approach could be extended to include ion kinetics, in order to study, e.g. ion
cyclotron waves.
2. Basic equations: cold fluid only

To introduce the novel features of our scheme in the clearest way, we shall begin by discussing a simplified
model in which the plasma is represented entirely as a cold electron fluid, with an immobile neutralizing ion
background. We shall use the subscript c to denote cold-electron quantities. In a later section, we generalize
the model to include PIC simulation electrons in addition to the cold electron fluid, and we shall then use the
subscript p to denote particle-electron quantities.



286 M. Lampe et al. / Journal of Computational Physics 214 (2006) 284–298
Our starting point is Maxwell�s equations, with the displacement current fully neglected:
r� E ¼ � 1

c
oB

ot
; ð1Þ

r � B ¼ � 4p
c
ncevc; ð2Þ

r � B ¼ 0; ð3Þ
where nc and vc are the cold-electron density and flow velocity. Because the displacement current has been
neglected, Eq. (2) implies that the electron current be divergence-free,
r � ðncvcÞ ¼ 0. ð4Þ

It follows that if
ncðx; tÞ ¼ n0ðxÞ ð5Þ

at t = 0, then Eq. (5) will be satisfied at all times. Poisson�s equation is not used; instead, the quasineutrality
condition, i.e., Eq. (4) or Eq. (5) determines the electrostatic component of the electric field.

Using the fact that n0(x) is time-independent, and therefore also nc(x) is time-independent, Eqs. (1) and (2)
can be reduced to a single equation relating E to the current ncevc,
ovc

ot
¼ c2

4pnce
r�r� E. ð6Þ
We use Eq. (6) to push the cold-fluid velocity vc forward in time. Notice that this procedure guarantees that
o

ot
r � ðncvcÞ ¼ 0; ð7Þ
so that if the quasineutrality condition (4) is satisfied at t = 0, it will continue to be satisfied at every time step.
Notice also that it is the electromagnetic field equations that have been used to determine vc. We have not yet
mentioned the electron fluid equations.

We use the cold-fluid momentum equation, written as
eE
m

¼ � ovc

ot
� vc � rvc �

evc � B

mc
; ð8Þ
to determine E. However, the equation in this form is not suitable for use in a finite-difference code, because
the ovc/ot term on the RHS leads to numerical instability. To avoid this problem, we use (6) to eliminate ovc/ot
from (8). The resulting equation for E is
r�r� Eþ
x2

pc

c2
E ¼ � 4pne

c2
vc � rvc �

x2
pc

c3
vc � B. ð9Þ
Eq. (9) is an elliptic partial differential equation that determines the complete vector E, including both the sole-
noidal and irrotational parts. It is thus never necessary to calculate the charge density or to use Poisson�s equa-
tion. Eq. (9) contains no time derivatives, and thus relates E to v and B at the same time, while Eq. (6) is a
time-stepping equation that relates E at half time steps to vc at whole time steps. Thus, the equations cannot
be advanced in a fully time-centered finite-difference scheme. However, in Section 4, we show that a predictor–
corrector–corrector solution procedure can be devised which is remarkably stable (fifth order in the time step)
and highly accurate. When working in Cartesian coordinates with periodic boundary conditions, we use Fou-
rier transform (FFT) to solve Eq. (9). In non-periodic systems we use successive over-relaxation. It is also pos-
sible to develop hybrid techniques that use FFT only for those coordinates that are periodic.
3. Linear plane waves in uniform media

Eqs. (2), (3), (6), and (9) may constitute an unfamiliar set of equations for determining v, E and B. Thus, it
is perhaps useful to pause here to derive the linear whistler dispersion relation from these equations, in order
to establish the relation between our approximations and those that are familiar from the linear theory of
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whistlers. In addition, a linearized wave theory will be useful in the following section to guide us in the design
of a stable and accurate finite-difference solution procedure. We assume here that n0 and B0 are uniform, and
that the perturbation consists of a small-amplitude wave of form exp(ik Æ x � ixt). We choose coordinates (in
this section only) so that k is in the x-direction, B0 lies in the x–y plane, and h is the angle between k and B0.
Then (4) implies that k Æ vc = 0, i.e., vx = 0. Neglecting nonlinear terms, Eqs. (6) and (9) then reduce to:
1 In
the wo
to this
to nea
� ixvc ¼ � k2c2

4pn0e
îx � îx � E; ð10Þ

E� k2c2

x2
pc

îx � îx � E ¼ B0 � v

c
. ð11Þ
Noting that B0 has only x and y components, and vc has only y and z components, Eq. (10) can be written as:
� ixvy ¼
k2c2

4pn0e
Ey ; ð12aÞ

� ixvz ¼
k2c2

4pn0e
Ez; ð12bÞ
while Eq. (11) can be written as:
Ex ¼
vz
c
B0 sin h; ð13aÞ

1þ k2c2

x2
pc

 !
Ey ¼ � vz

c
B0 cos h; ð13bÞ

1þ k2c2

x2
pc

 !
Ez ¼

vy
c
B0 cos h. ð13cÞ
Eqs. (12) and (13) yield a right-hand-polarized normal mode with dispersion relation
x ¼ X cos h

1þ x2
pc=k

2c2
. ð14Þ
There are no electron plasma oscillations contained within Eqs. (12) and (13).
The dispersion relation derived by Helliwell (Eq. (3.12) of [2]) under the ‘‘quasi-longitudinal approxima-

tion’’ is
k2c2

x2
¼ 1þ

x2
pc

xðX cos h� xÞ . ð15Þ
Eq. (15) becomes identical to Eq. (14) if the first term on the RHS is dropped, as Helliwell does in his next
equation. The ‘‘quasi-longitudinal approximation’’ of classical linear whistler theory is in fact equivalent to
dropping the component of displacement current parallel1 to k, while the neglect of the first term in (15) is
equivalent to dropping the component of displacement current transverse to k. Our model does both, in
the context of the full nonlinear Maxwell/fluid equations. Helliwell shows that the quasi-longitudinal approx-
imation is accurate as long as
sin2h
cos h

<
2x2

pc

3xX
ð16Þ
for typical parameters of interest, this range extends from h = 0 nearly to h = 90�. It is of interest to compare
this range of validity with the range of propagation angles for whistlers. According to Eq. (14) (and the exact
conventional plasma parlance the component parallel to k is called the longitudinal displacement current, but in the older literature
rd ‘‘longitudinal’’ is also used with the very different meaning ‘‘parallel to B’’. The term ‘‘quasi-longitudinal approximation’’ refers
latter meaning. To confuse matters even further, it turns out (Eq. (16)) that the ‘‘quasi-longitudinal approximation’’ is valid for h up
rly 90�.
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Maxwell equations lead to exactly the same condition [1]), propagating whistlers (i.e., waves with real k) occur
only if
cos h >
x
X
. ð17Þ
Except for whistlers with x nearly exactly equal to X, Helliwell�s validity condition (16) is well satisfied over
the entire range of angles h that permit propagating waves. Thus, the approximations made in our model ap-
pear to be very well justified as long as x � xpc and x < 0.9X.
4. Finite-difference solution procedure: numerical stability

As a test of the numerical accuracy and stability of finite-difference schemes to solve Eqs. (6), (9), (2), and
(3), we consider the case of a single linear mode with spatial dependence eikz. In the present section, we choose
coordinates so that B is along the z-axis, and to simplify the algebra we assume k is parallel to B, but the result
is the same for oblique modes. For this case of parallel propagation, Eqs. (10) and (11) can be reduced to the
single equation
ovc

ot
¼ �x0̂iz � vc; ð18Þ
where îz is the unit vector along the magnetic field and
x0 �
k2c2

x2
pc þ k2c2

X ð19Þ
is the wave frequency from Eq. (14). Using the complex spinor notation u ” vx + ivy, Eq. (18) becomes simply
ou
ot

¼ �ix0u. ð20Þ
Thus, it is clear that the essential operation in our algorithm is simply a rotation, and the exact solution to (20)
is
u ¼ u0e�ixt; ð21Þ

neutrally stable, with real x equal to x0.

The linearized single-mode equation (20) could be solved with an implicit finite-difference scheme; in fact,
there are tricks that can be used to perform rotations exactly when one has prior knowledge of the angle of
rotation per time step [7,8]. However, our complete model equations (6) and (9) can only be solved explicitly,
by using (9) to solve for E and vc at a given time step, and then using this value of E in (6) to push vc to the next
time step. Since this procedure is not time-centered, it is necessary (for both accuracy and stability) to iterate
the finite time step to perform the rotation as accurately as possible. We can use (20) as a simple model to
guide us in the specification of a stable and accurate finite-difference procedure. For any given finite-difference
procedure, the solution to (20) will be of the form (21), but x will not be equal to the exact result x0. Errors in
the real part of x represent phase inaccuracy, while errors in the imaginary part represent unphysical insta-
bility or damping; these latter types of errors are particularly serious since they exponentiate over time.

The explicit finite-difference form of (20) is
u1 � u0
s

¼ �ix0u0; ð22Þ
where s is the time step, u0 is the value at the beginning of the time step, and u1 is this first approximation to
the value at the end of the time step. Setting u1 ¼ u0e�ix1s, the solution to (22) is
x1 ¼
i

s
‘nð1� ix0sÞ � x0 þ

1

2
ix2

0s�
1

3
x3

0s
2; ð23Þ
where we have expanded in the small parameter x0s. The solution is unstable to first order in s, which is
unacceptable.



M. Lampe et al. / Journal of Computational Physics 214 (2006) 284–298 289
To improve the time-centering, we can use a predictor–corrector iteration, i.e., we define an improved
approximation to Eq. (20) by
u2 � u0
s

¼ �ix0
u0 þ u1

2
. ð24Þ
Setting u2 ¼ u0e�ix2s, the solution to (24) is
x2 ¼
i

s
‘n 1� ix0s�

1

2
x2

0s
2

� �
� x0 þ

1

6
x3

0s
2 þ 1

8
ix4

0s
3. ð25Þ
The solution is still unstable, but the growth rate is now third-order in x0s, and the real part of x is accurate to
second order. In some cases, this is quite adequate. If s is chosen to be 1/8X, the code can be run 215 = 32,768
time steps before the numerical instability causes the whistler with x � X to amplify by one e-fold.

However, it is possible to further improve the accuracy and stability by several orders of magnitude at min-
imal additional cost. To do this, we first perform a second corrector step, defining
u3 � u0
s

¼ �ix0

u0 þ u2
2

. ð26Þ
The solution to (26) is
x3 ¼
i

s
‘n 1� ix0s�

1

2
x2

0s
2 þ 1

4
ix3

0s
3

� �
� x0 þ

1

12
x3

0s
2 � 1

8
ix4

0s
3 þ 3

40
x5

0s
4 � 1

32
ix6

0s
5. ð27Þ
This solution is damped in third order; the correction has overshot and turned instability into damping, at
exactly the same rate. This may be regarded as an improvement, since numerical damping is preferable to
numerical instability, but we can obtain a really impressive advance in numerical stability by setting our solu-
tion u to the average of u2 and u3. We then find
x ¼ i

s
‘n 1� ix0s�

1

2
x2

0s
2 þ 1

8
ix3

0s
3

� �
� x0 þ

1

24
x3

0s
2 þ 1

80
x5

0s
4 þ 1

128
ix6

0s
5. ð28Þ
This solution is unstable, but only to fifth order in x0s, and even in the fifth-order error the coefficient is
extremely small. Using a time step s = 1/4X, the code can be run 219 = 524,288 time steps before any whistler
grows by one e-fold due to the numerical error. If the time step is 1/10X, the code can be run 108 time steps
before any whistler grows by one e-fold. For practical purposes, this amounts to perfect stability. Thus, this is
the procedure that we follow in our numerical solution. Specifically, our solution procedure is as follows:

1. Start with vn, En, Bn, the known values of v, E, B at time step n.

2. Use En in (6) to push v to time step n + 1. Call the result vð1Þnþ1, the first iteration to vn+1.

3. Solve Eqs. (2) and (3) for Bð1Þ
nþ1, using v

ð1Þ
nþ1 on the RHS.

Solve Eq. (9) for Eð1Þ
nþ1, using v

ð1Þ
nþ1 and B

ð1Þ
nþ1 on the RHS.

4. Repeat step (2), now using E
ð1Þ
nþ1=2 � ðEn þ E

ð1Þ
nþ1Þ=2 on the RHS. Call the result v

ð2Þ
nþ1.

5. Repeat step (3), using v
ð2Þ
nþ1 and B

ð2Þ
nþ1 on the RHS.

6. Repeat step (2) one more time, using E
ð2Þ
nþ1=2 � ðEn þ E

ð2Þ
nþ1Þ=2 on the RHS. Call the result vð3Þnþ1.

7. Repeat step (3) again, using v
ð3Þ
nþ1 and B

ð3Þ
nþ1 on the RHS.

8. Set vnþ1 � ðvð2Þnþ1 þ v
ð3Þ
nþ1Þ=2, Enþ1 � ðEð2Þ

nþ1 þ E
ð3Þ
nþ1Þ=2, and Bnþ1 � ðBð2Þ

nþ1 þ B
ð3Þ
nþ1Þ=2.

9. Proceed to the next time step.

Actual code runs are found to agree with Eq. (28) nearly exactly. As an example, Fig. 1(a) shows the time
dependence of the wave amplitude for a whistler initiated in cold plasma with frequency x = 0.69X. In this run
the time step is s = 1/4X, the system length is 64 grid points, and the initiated wave is mode three, i.e., 21.33
grid points per wavelength. In an exact solution, the whistler would be neutrally stable. After 20,000 time
steps, Eq. (28) predicts wave growth by a factor 1.0041, which (to five-figure accuracy) is exactly what is found.
For purposes of comparison, Fig. 1(b) shows the same wave simulated using a simple double-corrector



Fig. 1. (a) HEMPIC simulation showing the amplitude Jy of a stable whistler launched in cold plasma. Over 20,000 time steps, the
amplitude grows by a factor 1.004 due to numerical instability, in exact agreement with Eq. (28). (b) The same simulation using a simple
double-corrector algorithm. In this case, the wave decays by a factor 0.11, in good agreement with Eq. (27).
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scheme, without averaging the first and second corrections, i.e., stopping at step (7) above. The predicted re-
sult from Eq. (27) is then exponential wave damping by a factor 0.11; the actual result shown in Fig. 1(b) is
exponential decay by a factor 0.12.

5. Inclusion of PIC simulation particles in addition to the cold fluid

We now consider the electron distribution to consist of a set of simulation particles, in addition to the cold
fluid component that has been considered previously. In typical applications, the simulation particles may rep-
resent the energetic portion of the electron distribution, or the class of electrons that are cyclotron resonant
with the waves and therefore exhibit nonlinear behaviors that can only be represented at the kinetic level.
Treating these simulation particles fully relativistically, the equations of motion for the jth particle are:
dpj
dt

¼ �eE� evj � B

c
; ð29Þ

dxj

dt
¼ vj; ð30Þ
where pj ” mcjvj is the momentum and cj � ð1þ p2j=m
2c2Þ�1=2 is the relativistic mass factor. In the usual fashion

for a PIC code, the fields are interpolated to the particle position from a grid, and conversely the particles are laid
down onto the grid to specify the particle density np and the particle current Jp at each grid point. We shall see
below that it is also necessary to lay down several other moments of the particle velocity distribution in the same
way. Now the equations that determine the fields E and B, and the cold-fluid density nc and velocity vc, are the
generalizations of Eqs. (2), (3), (5), (6), and (9) to include np and Jp. The quasineutrality condition becomes
ncðx; tÞ þ npðx; tÞ ¼ n0ðxÞ; ð31Þ

where now both nc and np can vary with time, but their sum must be time-independent. (However, np/nc is
often so small that nc can be regarded as time-independent for all practical purposes.) By analogy with Eq.
(6), the equation
oJc

ot
¼ � c2

4p
r�r� E� oJp

ot
ð32Þ
is used to push the cold-fluid current Jc ” �ncevc, and the fields are determined by
r� B ¼ 4p
c
ðJc þ JpÞ ð33Þ
and
r�r� Eþ
x2

pc

c2
E ¼ 4p

c2
r � ðvcJcÞ �

x2
pc

c3
vc � B� 4p

c2
oJp

ot
; ð34Þ
where xpc ” (4pnce
2/m)1/2.
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In a finite-difference implementation, Eqs. (31)–(34) are used at each time step to determine the quantities
on the LHS, and the quantities on the RHS are regarded as known. Just as in the case of the cold fluid, the
time derivatives of Jp on the RHS of Eqs. (32) and (34) lead to numerical problems. To eliminate these time
derivatives, we use the momentum equation for the particles, treated as a relativistic warm fluid, which can be
derived by taking the velocity moment of the relativistic Vlasov equation. In analytic form, this equation is
oJp

ot
¼ er �

Z
d3vvvfpðx; v; tÞ þ

e2

m
E �
Z

d3v
fpðx; v; tÞ

cðvÞ I� vv

c2

� �
� e2

mc
B�

Z
d3vv

fpðx; v; tÞ
cðvÞ ; ð35Þ
where fp(x,v,t) is the distribution function of the simulation particles, and I is the unit dyadic tensor. In the
PIC code, each of the integrals is evaluated on the grid by laying down the relevant simulation particle
quantity.

If the simulation particles are non-relativistic, c is unity for all particles and then Eqs. (32), (34) and (35)
may be written in the more compact form:
oJc

ot
¼ � c2

4p
r�r� E� e

m
r � Kp �

x2
pp

4p
E� eB� Jp

mc
; ð36Þ

r �r� Eþ
x2

p

c2
E ¼ � 4p

c2
r � ðvcJcÞ �

4peB� ðJc þ JpÞ
mc

� 4pe
m

r � Kp; ð37Þ
where xpp = (4pnpe
2/m)1/2 is the non-relativistic simulation particle plasma frequency, xp = [4p(nc +

np)e
2/m]1/2 is the total plasma frequency, and Kp(x, t) ” �d3vvvfp(x,v, t) is the simulation particle stress

tensor.
Note that the particles are advanced using Newton�s equations of motion (29) and (30), but the cold-fluid

velocity vc, or equivalently the fluid current Jc, is advanced by using Eq. (36), which ultimately derives from
the quasi-neutrality requirement. Our quasineutral scheme could not be implemented in a pure PIC code,
without the presence of the cold-fluid electrons.

To advance equations (29)–(35) from time step n to time step n + 1, we can use essentially the same predic-
tor–corrector–corrector scheme that was prescribed at the end of Section 4. We first outline a numerical pro-
cedure that is applicable quite generally. In the following paragraph, we give a short-cut that can be used when
np/nc � 1. The general procedure is:

1. Start with En, Bn, ncn, Jcn, {xjn,pjn}, the known values of the fields, cold-fluid density nc and current Jc, and
particle positions/momenta at time step n.

2. Use En and Bn in (29) and (30) to push {xj,pj} to time step n + 1, and call the result fxð1Þ
j;nþ1; p

ð1Þ
j;nþ1g. Take care

that the particle push resolves wavelength scales.
3. Lay down the particle phase space coordinates fxð1Þ

j;nþ1; v
ð1Þ
j;nþ1g on the grid to form up nð1Þp;nþ1, J

ð1Þ
p;nþ1, and the

various moments that appear in Eq. (35). Define nð1Þp;nþ1=2 � ðnpn þ nð1Þp;nþ1Þ=2, and similarly for Jð1Þ
p;nþ1=2 and the

other moments.
4. Use En, Bn, n

ð1Þ
p;nþ1=2, J

ð1Þ
p;nþ1=2, and the other moments at time n + 1/2 in (32) to push Jc to time step n + 1. Call

this value J
ð1Þ
c;nþ1.

5. Solve Eqs. (34) and (35) for Eð1Þ
nþ1, using J

ð1Þ
c;nþ1, J

ð1Þ
p;nþ1, and the various moments at time n + 1 on the RHS.

Solve Eqs. (33) and (3) for Bð1Þ
nþ1, using J

ð1Þ
c;nþ1, J

ð1Þ
p;nþ1 on the RHS.

6. Repeat steps (2–5), using E
ð1Þ
nþ1=2 � ðEn þ E

ð1Þ
nþ1Þ=2 and B

ð1Þ
nþ1=2 � ðBn þ B

ð1Þ
nþ1Þ=2 on the RHS.

7. Repeat steps (2–5) again, using E
ð2Þ
nþ1=2 � ðEn þ E

ð2Þ
nþ1Þ=2 and B

ð2Þ
nþ1=2 � ðBn þ B

ð2Þ
nþ1Þ=2 on the RHS.

8. Set xj;nþ1 � ðxð2Þ
j;nþ1 þ x

ð3Þ
j;nþ1Þ=2, and similarly for pj,n+1, Jc,n+1, En+1, and Bn+1.

9. Proceed to the next time step.

In many problems of interest, the population of resonant electrons is small and np/nc � 1. In this case, the
PIC particles only slowly influence the evolution of the wave. It is then quite adequate to first advance the
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wave from time step n to time step n + 1, using the procedure of Section 4, which involves only the cold fluid,
and then afterwards to use leapfrog to advance the particles. This avoids the need to push the particles three
times at each time step.
6. Energy conservation

Since our model is based on an approximation to Maxwell�s equation, it is important to determine whether
the model conserves energy. We now address this issue.

Let �kin be the total kinetic energy density of the plasma (including the kinetic energy of the cold-fluid elec-
trons, as well as the ordered and thermal kinetic energy of the particle electrons). Since our model includes the
exact equations of motion for the particle electrons, as well as the exact momentum equation for the cold-fluid
electrons,
oekin
ot

¼ J � Eþr �Q; ð38Þ
where J Æ E is the work done on the plasma, per unit volume, and Q is the standard heat flux plus convective
energy flow. Using Eq. (33) to substitute for J and using a vector identity, we find
J � E ¼ c
4p

E � ðr � BÞ � c
4p

½B � ðr � EÞ � r � ðE� BÞ�. ð39Þ
Now using Eq. (1) to eliminate $ · E, we find
J � E ¼ �r � c
4p

ðE� BÞ � o

ot
B2

8p
. ð40Þ
Thus, we can write Eq. (38) in the conservative form
oe
ot

¼ r � ðQþ SÞ; ð41aÞ
where
S � cðE� BÞ=4p ð41bÞ
and
e � ekin þ
B2

8p
. ð41cÞ
Note that the Poynting electromagnetic energy flux S is exact, but the electric field energy E2/8p is omitted
from e; this is due to our neglect of the displacement current. Since |E| = (x/kc)|B|, this is consistent with
our basic assumption that |x/kc| � 1. Thus, the equations of our model satisfy an energy conservation law,
albeit with a slightly modified definition of field energy.

Of course, this does not necessarily mean that there will be exact conservation in a finite-difference
fluid/PIC implementation. In cases where HEMPIC is run with the plasma represented entirely as a cold
fluid, we find that the energy grows systematically and extremely slowly in exact agreement with the
numerical stability calculation presented in Section 4. For example, for the case shown in Fig. 1, the wave
amplitude grows by a factor 1.004 over 20,000 time steps, and the total energy grows systematically by a
factor 1.008, i.e., as the square of the amplitude. In cases where the plasma is represented as a cold fluid
plus simulation particles, we find that energy fluctuates a bit, due to the statistical noise associated with
the finite number of particles. These fluctuations easily dominate over any systematic effects, but they are
well within the normal expectations for a PIC code, e.g. on the order of ±0.5% in the case shown in the
following section, where an unstable whistler grows by three orders of magnitude over a time 600/X, com-
prising 2400 time steps s = 1/4X.
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7. Example: Growth and saturation of whistler instability

Our primary motivation for developing the HEMPIC code is to study the nonlinear physics of whistler
instability, amplification, and triggering in the magnetosphere. There is an enormous database in this area
(see, e.g. the review by Helliwell [9]), and considerable effort has been devoted to theoretical and numerical
studies (see, e.g. [6,10–13]), but computational efficiency has been a limiting factor. It is thought that finite
wavepacket length, and spatial variation of both the plasma density and the ambient field, play an essential
role in the nonlinear evolution of resonant electron/whistler interactions [6,10,11]. However, we shall defer
HEMPIC studies that include these effects to future publications. In the present paper, we consider a conve-
nient nonlinear test problem that is amenable to analytic solution: the whistler instability that occurs in homo-
geneous plasma with an electron distribution of the form
f ðpÞ ¼ ncdðpÞ þ
np

2pp?0

dðp? � p?0Þdðpz � pz0Þ; ð42Þ
i.e., a cold plasma component plus a ring distribution of energetic electrons. We shall assume that np � nc. In
Eq. (42) the momentum p is written in cylindrical coordinates, with the magnetic field taken to be along the
z-axis.

To set the simulations in context, we begin with a brief presentation of the linear and nonlinear theory
for unstable whistlers in this situation. Considering only modes propagating along z, and beginning with the
exact expression for the electron susceptibility (Eq. (10.48) of [1]), one can derive the exact linear dispersion
relation
0 ¼ k2c2

x2
�

x2
pc

X� x
þ

x2
pp

xc0

x� kvz0
x� kvz0 � X=c0

�
x2

pp

2xc0

v2?0

c2
x2 � k2c2

ðx� kvz0 � X=c0Þ
2
; ð43Þ
where vz0 ” pz0/mc0, v^0 ” p^0/mc0, p20 � p2z0 þ p2?0, and c0 � ð1þ p20=m
2c2Þ1=2. Instability occurs for modes that

are in cyclotron resonance with the fast electrons, i.e., values of k that satisfy
xðkÞ � kvz0 � X=c0 ¼ 0. ð44Þ

The instability is due to the second-order pole in the last term of (43), and it is driven by the transverse energy
of the ring distribution. (Note that the coefficient of this term is proportional to v2?0. The preceding first-order
pole term has no dependence on v2?0, and it does not lead to instability.) To obtain an analytic solution to the
dispersion relation, we treat the resonant electrons (last two terms of (43)) as a perturbation, and write the
frequency x(k) as
xðkÞ � x0ðkÞ þ dxðkÞ; ð45Þ
where x0(k), given by Eq. (19), is the unperturbed frequency due to only the cold electrons. We let k0 be the
solution of the resonance condition (44) with x(k) given by x0(k). Using (45) to expand (43), and keeping only
lowest orders in dx, we find
½dxðk0Þ�3 ¼
v2?0

2c2
x2

ppðk20c2 � x2
00Þ

c0x00

k20c
2

x2
00

þ
x2

pc

ðX� x00Þ2

 !�1

; ð46Þ
where x00 ” x0(k0). There is one unstable root, with a growth rate of order (np/nc)
1/3, and a frequency shift

Re(dx) which is of the same order and negative, since k20c
2 > x2

0 for a whistler. The instability thus formally
resembles a cold-beam two-stream instability. (There would still be an instability if k20c

2 were less than x2
0, but

in that case it would formally resemble the negative-mass instability that is associated with the azimuthal
bunching in gyrotrons [14].)

The nonlinear theory of the single-mode instability begins with the equation of motion (29) of the par-
ticles. Assuming that the wave electric field is of the form EðtÞ exp ikz� i

R t
0
xðt0Þdt0

� �
, where E(t) and x(t)

are slowly varying (compared to the time scale x), the vector equation (29) can be reduced to three scalar
equations:
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op?
ot

¼ �eE 1� kvz
x

� �
cosw; ð47aÞ

opz
ot

¼ �eE
kv?
x

cosw; ð47bÞ

ow
ot

¼ � eE
p?

1� kvz
x

� �
sinwþ kvz � xþ X=c; ð47cÞ
where u ” tan�1(py/px) is the phase of the electron momentum p^, and w � u� kzþ
R t
0
xðt0Þdt0 is the phase

difference between the electron and the wave. Note that the fast timescale has been removed from these equa-
tions; p^, pz, and w are all variables that vary slowly compared to the gyrofrequency X or the wave frequency
x.

The equations can be further simplified by expanding in the small parameter x/kvz, the ratio of the wave
electric field to the wave magnetic field. To lowest order in this parameter, Eq. (47) indicates that p2 � p2? þ p2z
is constant. (Kinetic energy is conserved because the forces on the electron are, to this order of approximation,
magnetic.) Thus, it is preferable to express p in rotating spherical coordinates (p,a,w), where a ” tan�1(p^/pz) is
the pitch angle. Eq. (47) then becomes
da
dt

¼ keE
mcx

cosw; ð48aÞ

dw
dt

¼ � keE
mcx

cot a sinwþ kv cos a� xþ X
c
. ð48bÞ
The coupled nonlinear equations (48a) and (48b) for a and w have a fixed point (a0,w0), where w0 = p/2 (i.e.,
particle velocity in phase with the wave magnetic field), and a0 is the solution of a nonlinearly modified res-
onance condition
keE
mcx

cot a0 sinw ¼ kv cos a0 � xþ X
c
. ð49Þ
The value of w for non-resonant electrons rapidly cycles through the full range 0–2p, but when E becomes
large enough, electrons whose pitch angle a and relative phase w lie close to (a0,w0) become trapped in phase,
and (a,w) perform small oscillations about (a0,w0). This phenomenon of phase trapping is analogous [15] to
the longitudinal velocity trapping that occurs in the electrostatic two-stream instability [16], and as in that case
the trapped electrons exchange energy back and forth with the wave over the course of a trapping oscillation.
As a result, the linear instability saturates when trapping sets in, and the wave amplitude subsequently
oscillates at the trapping frequency [16].

Figs. 2–5 show some results of a one-dimensional HEMPIC simulation, with xpc/X = 8, np/nc = 10�4,
vz0/c = 1/5, and v^0/c = 1/5. For these parameters, the unstable wave has x0 = X/5. The simulation uses
64 grid cells per wavelength, 20,000 particles, and the time step is s = 1/4X. Simulation particles are used
. Time evolution of Jyp, plotted on a semi-log scale, for a whistler driven unstable by a ring distribution of energetic electrons.



Fig. 4. Snapshots of the particle distribution in the phase space (w vs. a), (a) late in the linear growth phase, at t = 270/X; (b) during the
onset of electron phase trapping, at t = 330/X; (c) after several trapped-particle oscillations, at t = 600/X.

Fig. 3. Time evolution of Jyc, plotted on a linear scale, from the simulation of Fig. 2.
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to represent the ring distribution of energetic electrons in Eq. (42). In Fig. 2, we show the temporal
growth of the simulation-particle current component Jyp on a semi-log scale. The instability is seen to
grow exponentially over three orders of magnitude, with a growth rate 0.024X, in excellent agreement with
the predicted exponential growth rate 0.026X from Eq. (46). Over the course of the run, the total energy �
defined in Eq. (41c) is conserved to within ±0.5%. Fluctuations in energy seem to be due primarily to the
noise associated with the finite number of particles, rather than the finite time step or any systematic ten-
dency in the algorithm. Fig. 3 shows the cold-electron current component Jyc on a linear scale. This figure
shows clearly the saturation and subsequent oscillation of the wave amplitude. Fig. 4 shows snapshots of
the simulation particles in the 2-D cross-section of phase space (w vs. a), at three different times. This
figure shows the phase trapping of the resonant electrons, which becomes quite complex at late times
due to anharmonic effects and to the slow oscillation of the wave amplitude. Fig. 5 shows the simulation
particle distribution in the phase space cross-section (py vs. z), showing how the particles become phase-
bunched as the wave grows, and then how the bunching spreads out after the particles are trapped. This is
a phenomenon that was emphasized by Helliwell and Crystal [17] early in the study of whistler
instabilities.



Fig. 5. Snapshots of the electron distribution in the phase space (py vs. z), showing (a) the onset of phase bunching late in the linear growth
phase, at t = 270/X; (b) nearly complete bunching shortly after saturation, at t = 330/X, and (c) spreading of the bunches after several
trapped-particle oscillations have occurred, at t = 600/X.
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8. Example: Ducting of whistler in narrow channels

It is known that whistlers can be guided along the magnetic field by both field-aligned plasma density
enhancements and plasma density depletions [2,18]. Traditionally, ray tracing and WKB analysis have been
used to study the physics underlying these ducting processes. However, there are experiments in the literature
[19–21] showing ducting in very narrow channels, comparable to the whistler wavelength, and the details of
these experiments have never been explained. In narrow density channels, it is necessary to use a full-wave
analysis. We are in the process of completing such an analysis, which will be the subject of a future
publication.

HEMPIC has proven quite useful in simulating ducting over a wide range of conditions, and we shall show
an example in Fig. 6. In these simulations, the plasma is represented entirely as a cold fluid, so that the
Fig. 6. (a) HEMPIC simulation of a ducted whistler in an enhanced-density channel. (b) The same whistler launched into uniform plasma.
In these figures, the horizontal scale runs from �1.82c/X to +1.82c/X, while the vertical scale runs from zero to 15.5c/X.
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whistlers are stable, and the waves that are launched are in the linear regime. A whistler with frequency x = X/
10 is launched at (x = 0,z = 0), within an enhanced-density channel with profile
nðxÞ ¼ nout þ
1

2
ðnout � ninÞ tanh

x� xd
xg

� �
� tanh

xþ xd
xg

� �� �
. ð50Þ
Here, the channel half-width is xd = 0.18 c/X, the channel edge sharpness is xg = 0.036c/X, the density ratio is
nin/nout = 4, and xp,in/X = 17.2, xp,out/X = 8.6. In Fig. 6(a), we show a snapshot of the wave component
Ey(x,z). We see that a whistler with wavelength k = 1.2c/X propagates within and is guided along the channel.
Outside the channel the disturbance is evanescent, as predicted by theory. In Fig. 6(b), the same wave is ini-
tiated in a uniform plasma with xp/X = 17.2. Since there is no channel the wave fills a cone that expands in x,
with a consequent steady drop in amplitude. The simulations also show regimes in which ducting occurs in
reduced-density channels, and regimes in which lossy ducting occurs.
9. Summary

We have presented a new hybrid simulation scheme HEMPIC which includes the full nonlinear kinetic
phenomena involved in whistler evolution, works in homogeneous or inhomogeneous situations, is not re-
stricted to a single coherent mode, eliminates the speed-of-light time scale and the electron plasma oscillation
time scale, and concentrates simulation resources on the parts of the electron distribution that make kinetic
contributions to wave growth. The elements of the code are as follows. (1) The plasma is represented as a cold
fluid component plus a set of simulation particles. At our option, the simulation particles can be chosen to
represent any part of the electron velocity distribution that is of kinetic interest, e.g. the complete ensemble
of energetic electrons, or only a set of resonant electrons. (2) Quasineutrality is enforced, i.e., $ Æ J = 0. We
emphasize that this does not mean that there are no electrostatic fields, only that |ni � ne| � ni and that the
electrostatic part of the electric field E is determined by quasineutrality, rather than by solving Poisson�s
equation. This assumption is appropriate when the frequencies of interest are slow compared to the plasma
frequency, and it eliminates plasma oscillations from the system. In our case, an elliptic equation for E is
derived that combines Faraday�s and Ampere�s laws, the cold-fluid momentum equation, and a stress tensor
constructed from the particle velocities. (3) The displacement current is neglected, since the waves of interest
are slow compared to c. This is similar to the Darwin model. However, (1) and (2) allow us to neglect the full
displacement current, not just the solenoidal part, and thereby avoid all of the complications of the Darwin
model. (4) Faraday�s and Ampere�s laws, rather than a momentum conservation equation, are used to push the
cold-fluid velocity. This guarantees quasineutrality. (5) The simulation particles are pushed in standard PIC
fashion. (6) The magnetic field is determined by Ampere�s law.

In the linear regime, the scheme reproduces the quasi-longitudinal dispersion relation for whistlers, and is
accurate for propagation angles up to and beyond the resonance cone. An accurate and extremely stable pre-
dictor–corrector–corrector scheme is used to solve the equations. The code need not resolve spatial scales
smaller than the wavelengths of interest, nor time scales shorter than the gyrofrequency. As illustrations of
the use of the code, we have presented studies of the long-time nonlinear evolution of whistler instabilities,
and of whistler ducting in density channels.
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